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Abstract 
This paper presents a comprehensive framework for risk assessment in linear investment portfolios, 
including spot and perpetual contracts, by estimating Value at Risk (VaR) and Conditional Value at Risk 
(CVaR) using four methodologies. The study emphasises the importance of correctly accounting for the 
signs and magnitudes of net positions (long and short) within the portfolio covariance matrix to reflect 
economic exposure accurately. Portfolio variance and standard deviation are calculated using signed 
weights to capture both the direction and magnitude of positions. 

Four VaR estimation methods are employed: the Normal distribution method, the Skewed Student's 
t-distribution method, the Cornish-Fisher expansion, and Monte Carlo simulation. CVaR, as an extension 
of VaR, is estimated using the Cornish-Fisher and Monte Carlo methods to quantify the average losses 
beyond the VaR threshold, providing a more comprehensive view of tail risks. 

Backtesting results, evaluated using the Kupiec Proportion of Failures Test, indicate that the 
Cornish-Fisher method delivers the most accurate VaR estimates, effectively capturing skewness and 
kurtosis in the return distribution while accounting for asset correlations. The findings support the use of 
Cornish-Fisher VaR for linear portfolios and highlight the practical advantages of CVaR in stress 
scenarios, where understanding potential losses beyond VaR is critical. 

This study underscores the significance of proper weighting in risk modelling and advocates for adaptive 
methods, such as exponentially weighted moving averages (EWMA), to enhance the sensitivity of risk 
estimates to changing market conditions. The proposed framework provides valuable insights for risk 
management, enabling robust assessment of potential losses in portfolios exposed to diverse market 
dynamics. 
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1. Introduction 
In financial risk management, accurately estimating potential losses in investment portfolios is 
critical for informed decision-making, regulatory compliance, and optimising portfolio 
performance. Value at Risk (VaR) has emerged as a cornerstone metric for quantifying market 
risk, representing the maximum expected loss over a specified time horizon at a given 
confidence level. However, traditional VaR estimation methods often rely on simplifying 
assumptions, such as normally distributed returns, which may not adequately capture the 
complexities inherent in portfolios comprising various linear instruments, such as spot and 
perpetual contracts. 

Linear portfolios, widely utilised across asset classes, are characterised by their direct price 
dependency on underlying assets, making them particularly sensitive to volatility, correlations, 
and market movements. These portfolios often include both long and short positions to 
capitalise on directional or relative price changes. This dual exposure introduces challenges in 
risk modelling, particularly in capturing offsetting effects and accurately reflecting the economic 
exposure of the portfolio. 

While VaR provides an estimate of the threshold of potential losses, it does not offer insights 
into the magnitude of losses beyond that threshold, which is critical in stress scenarios. To 
address this limitation, Conditional Value at Risk (CVaR), also known as Expected Shortfall 
(ES), is employed as an extension. CVaR measures the average loss given that losses exceed 
the VaR threshold, offering a more comprehensive view of tail risks. This metric is particularly 
valuable for understanding the severity of potential losses during extreme market events, 
providing an additional layer of risk assessment for portfolio managers. 

This paper proposes a robust framework for estimating both VaR and CVaR for linear portfolios 
by leveraging the covariance matrix with signed weights to account for the direction and 
magnitude of net positions. This approach ensures that both long and short positions are 
incorporated accurately, offering a comprehensive view of portfolio risk. 

Four distinct methodologies are employed to estimate VaR: 

1. Normal Distribution Method: Assumes normally distributed returns and calculates VaR 
using portfolio variance derived from the covariance matrix. 

2. Skewed Student's t-Distribution Method: Accounts for skewness and excess kurtosis 
by fitting a skewed Student's t-distribution to historical returns. 

3. Cornish-Fisher Expansion: Adjusts quantiles of the normal distribution to incorporate 
higher moments (skewness and kurtosis), improving accuracy in non-normal return 
distributions. 

4. Monte Carlo Simulation: Generates a distribution of portfolio returns using simulated 
asset returns based on the covariance matrix. 
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For CVaR estimation, the Cornish-Fisher expansion and Monte Carlo simulation methods are 
extended to evaluate the expected losses beyond the VaR threshold, demonstrating their utility 
in quantifying tail risk. 

The effectiveness of these methodologies is assessed through backtesting, employing the 
Kupiec Proportion of Failures Test to evaluate their ability to predict potential losses under 
various market scenarios. The findings highlight the strengths and limitations of each method, 
with the Cornish-Fisher Expansion demonstrating superior performance in capturing 
non-linearities and tail risks in portfolio returns. 

This paper is structured as follows: Section 2 describes the data and methodology, 
emphasising the importance of signed portfolio weights. Section 3 explores the VaR and CVaR 
estimation methods. Section 4 presents backtesting results and comparative analyses. Finally, 
Section 5 concludes with recommendations for practitioners and implications for broader risk 
management applications. 
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2. Data and Methodology 
2.1 Data 
The dataset employed in this study consists of daily price data for 159 digital assets, 
encompassing both long and short positions across various sectors. The data spans multiple 
years, allowing for robust risk estimation and analysis. A 180-day rolling window is used to 
calculate portfolio risk metrics, with backtesting conducted over a one-year period. Daily log 
returns are computed to stabilise variance and account for compounding effects, enabling a 
more consistent evaluation of portfolio volatility. 

The portfolio composition prioritises larger positions in high market capitalisation assets due to 
their higher liquidity and lower price volatility. This focus aligns with common practices in linear 
portfolio construction, where the stability of large-cap assets mitigates risks associated with 
low-cap assets, which are included in smaller allocations for diversification. 

Despite the robustness of the dataset, several constraints merit discussion. The focus on 
large-cap assets may limit the generalisability of results to portfolios that heavily include 
small-cap assets, which exhibit higher idiosyncratic risk. Additionally, the reliance on historical 
data assumes that past volatility and correlations are representative of future market behaviour, 
an assumption that may falter during structural changes or extreme market conditions. While the 
dataset provides a diverse cross-section of digital assets, its ability to reflect the broader 
dynamics of more volatile or illiquid markets remains limited. 

By concentrating on linear instruments, such as spot and perpetual contracts, this study 
provides a focused analysis but does not extend to portfolios with nonlinear exposures, such as 
those involving options or dated futures. Furthermore, the covariance structure employed, 
though effective over the rolling window, may not fully capture time-varying correlations during 
periods of market stress. These factors underline the need for cautious interpretation of results, 
particularly in applications beyond the specific portfolio characteristics studied. 

Figure 1: Portfolio Positions 
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Figure 2: Portfolio Net Positions Size
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2.2 Portfolio Covariance Approach 
The portfolio covariance approach forms the foundation of this study's risk modelling framework. 
By incorporating signed portfolio weights and the covariance matrix of asset returns, this 
methodology ensures that both the magnitude and direction of each position (long or short) are 
accurately reflected in risk estimates. This section outlines the key steps in the approach: 
calculating asset returns, estimating the covariance matrix, determining portfolio weights, and 
deriving portfolio variance and standard deviation. 

2.2.1 Calculation of Asset Returns 

Daily log returns are calculated for each asset to standardise the return series and stabilise 
variance over time. Log returns are defined as: 

 𝑟
𝑖,𝑡

 =  𝑙𝑛
𝑃

𝑖,𝑡

𝑃
𝑖,𝑡−1

( )
Where is the log return of asset i on day t. is the closing price of asset i on day t and 𝑟

𝑖,𝑡
 𝑃

𝑖,𝑡
 

is the closing price on the previous day. This method accounts for continuous 𝑃
𝑖,𝑡−1

 

compounding and stabilises the variance of the returns, which is beneficial for statistical 
analysis. 

2.2.2 Estimation of the Covariance Matrix 
 
The covariance matrix Σ of asset returns is estimated using the historical log returns: 

 
 Σ =  𝐶𝑜𝑣(𝑅)

Where  R represents the matrix of asset returns. The diagonal elements of Σ capture the 
variances of individual asset returns, while the off-diagonal elements represent the covariances 
between pairs of assets. This matrix provides a comprehensive view of the relationships 
between assets, enabling the modelling of diversification effects and co-movements. 

2.2.3 Portfolio Weights with Signed Positions 

In traditional portfolio theory, weights are determined based on the proportion of capital 
allocated to each asset and typically sum to one. For linear portfolios that include both long and 
short positions, weights must also account for the direction and magnitude of net positions to 
reflect true economic exposure. The portfolio weight for each asset is defined as: 

The weights are calculated as: 

 ω
𝑖
 =  

𝑛𝑒𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛
𝑖

𝑗 = 1

𝑁

∑ 𝑁𝑒𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛
𝑗| |
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Where; 

●  is the weight of asset i in the portfolio ω
𝑖

●  is the net position of asset i, positive for long positions and negative for 𝑁𝑒𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛
𝑖

short positions 
● N is the total number of assets in the Portfolio 

where  is the weight of asset i,  i represents the net position of asset i (positive for ω
𝑖

𝑁𝑒𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛
𝑖

long positions, negative for short positions), and N is the total number of assets in the portfolio. 
This approach allows the weights to reflect offsetting effects, ensuring an accurate 
representation of portfolio exposure. Notably, the weights may not sum to one and can sum to 
zero in market-neutral configuration. 

2.2.4 Calculation of Portfolio Variance and Standard Deviation 

The portfolio variance is calculated using the signed weights and the covariance matrix: 

 σ
𝑝
2 =  𝑤𝑇Σ𝑤

Where  is the portfolio variance,  is the vector of portfolio weights, including signs for long σ
𝑝
2 𝑤

and short positions and Σ is the covariance matrix of asset returns. The portfolio standard 
deviation. ,  is the square root of the variance: σ

𝑝

 σ
𝑝
 =  σ

𝑝
2

This calculation incorporates both the magnitude and direction of each position, capturing the 
hedging effects of the portfolio's structure. The standard deviation serves as a measure of the 
portfolio's volatility, forming a critical input for VaR and CVaR calculations. 

Figure 2 presents a sample standard deviation using the signed weights and covariance matrix. 
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Figure 3: Histogram of Predicted Portfolio Standard Deviations 

 
Red line: Density curve, dashed green line: Mean and dotted purple line: Median. 
 

The portfolio covariance approach ensures a rigorous representation of economic exposure in 
risk estimation for linear portfolios. By leveraging signed weights and the covariance matrix, this 
methodology accounts for the interplay between long and short positions, providing a robust 
foundation for calculating portfolio volatility and assessing potential losses. However, as 
discussed, the use of historical covariance matrices assumes stationarity, which may not hold 
during periods of market stress or regime shifts, a limitation addressed in subsequent sections. 

3. Value at Risk Estimation Methods 
Accurately estimating Value at Risk (VaR) for linear portfolios requires methodologies that can 
account for the unique characteristics of portfolio return distributions, including volatility 
clustering, skewness, and kurtosis. In this study, four distinct approaches are employed to 
estimate VaR: the Normal Distribution Method, the Skewed Student's t-Distribution Method, the 
Cornish-Fisher Expansion, and Monte Carlo Simulation. Each method is suited to different 
assumptions about return behaviour and levels of computational complexity, enabling a 
comprehensive comparison of their performance. 

While the Normal Distribution Method serves as a benchmark with its simplicity and widespread 
use, the other methods aim to address its limitations by incorporating asymmetry and fat tails. 
These enhancements allow for more precise risk assessment in portfolios where return 
distributions deviate from normality. 
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The subsequent subsections provide detailed explanations of each method, outlining their 
theoretical underpinnings, computational processes, and practical applications in the context of 
linear portfolios. 

3.1 Normal Distribution Method 
The Normal Distribution Method is a foundational approach to VaR estimation, based on the 
assumption that portfolio returns follow a normal distribution. This method is computationally 
straightforward, relying on the portfolio's standard deviation and the Z-score corresponding to 
the chosen confidence level (α) to estimate potential losses: 

 𝑉𝑎𝑅
𝑁𝑜𝑟𝑚𝑎𝑙

 =  𝑧
α
 ×  σ

𝑝

Where;  

●  is the Z-score for the confidence level  (e.g. = -1.645 for 95% confidence level). 𝑧
α

α 𝑧
0.05

 

●  is the portfolio standard deviation as calculated from the covariance matrix. σ
𝑝

The key advantage of this method lies in its simplicity and the ease with which it can be 
implemented. However, it assumes that returns are symmetrically distributed and neglects the 
skewness and kurtosis often observed in financial return distributions. These assumptions can 
lead to underestimation of tail risks, particularly in turbulent market conditions. 

Despite its limitations, the Normal Distribution Method remains widely used as a benchmark for 
risk assessment, offering a baseline against which the performance of more sophisticated 
methods can be evaluated. 

Figure 2 below shows the normal distribution fitted to the portfolio return data, highlighting 
potential deviations in the tails. 
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Figure 4: Empirical Portfolio Distribution  vs Normal distribution  

 

3.2 Skewed Student's t-Distribution Method 
The Skewed Student's t-Distribution Method extends the traditional VaR framework by 
addressing the limitations of normality assumptions. Empirical evidence from financial markets 
demonstrates that asset returns often exhibit fat tails (kurtosis) and asymmetry (skewness), 
which are inadequately captured by the normal distribution. The Skewed Student's t-distribution 
offers a flexible model capable of fitting return distributions with these properties, providing a 
more realistic representation of portfolio risk. 

In this method, the portfolio return distribution is approximated by a skewed Student's 
t-distribution, parameterised to account for skewness (𝛾) and degrees of freedom (𝓥) that control 
the thickness of the tails. VaR is calculated using the quantile function of the fitted distribution: 

 

 𝑉𝑎𝑅
𝑠𝑘𝑒𝑤𝑒𝑑−𝑡

 = 𝑄
𝑠𝑘𝑒𝑤𝑒𝑑−𝑡

(α) 

where: 

●  is the quantile of the skewed Student's t-distribution at confidence level α. 𝑄
𝑠𝑘𝑒𝑤𝑒𝑑−𝑡

(α)

The parameters of the skewed Student's t-distribution—location, scale, skewness, and degrees 
of freedom—are estimated using maximum likelihood techniques, ensuring that the model fits 
the empirical return data as closely as possible. 

This approach is particularly effective for portfolios exposed to asymmetric market conditions or 
extreme price movements, as it captures the tail risks that traditional methods may overlook. 
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However, the computational intensity of fitting a skewed t-distribution, especially for portfolios 
with a large number of assets, poses a challenge. Additionally, the accuracy of the results 
depends on the quality of parameter estimation, which can be sensitive to sample size and the 
chosen estimation window. 

Despite these challenges, the Skewed Student's t-Distribution Method provides a significant 
improvement over simpler approaches in capturing the higher-order characteristics of return 
distributions. Its ability to model both skewness and kurtosis makes it a valuable tool for risk 
managers seeking a more nuanced understanding of potential losses in linear portfolios. 

Figure 5: Empirical Portfolio Distribution vs Skewed T-Distribution  

 

3.3 Cornish-Fisher Expansion 
The Cornish-Fisher expansion offers a method for adjusting quantiles of the normal distribution 
to incorporate skewness (γ) and kurtosis (κ) observed in portfolio return distributions. By 
modifying the Z-scores typically used in VaR calculations, this approach enables the estimation 
of risk metrics that account for deviations from normality, providing a more accurate assessment 
of tail risks. 

The adjusted Z-score for a given confidence level (α) is calculated as:  

 𝑧
α
𝐶𝐹 =  𝑍

α
 +  1

6 𝑧
α
2 −  1( )γ +  1

24 𝑧
α
3 −  3𝑧

α( )κ −  1
36 2𝑧

α
3 −  5𝑧

α( )γ2

where: 

●  is the standard Z-score for confidence level α\alphaα. 𝑍
α

●  is the skewness of the portfolio return distribution. γ
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●  is the excess kurtosis (kurtosis minus 3) of the portfolio return distribution. κ

The VaR is then calculated as: 

 𝑉𝑎𝑅
𝐶𝐹

 =  − µ
𝑝
 +  𝑧

α
𝐶𝐹  σ

𝑝( )
Where: 

●  is the portfolio mean return (often assumed to be negligible over short horizons). µ
𝑝

●  is the portfolio standard deviation. σ
𝑝

This method retains the use of the covariance matrix while adjusting for the higher moments of 
the return distribution. Consequently, the Cornish-Fisher expansion strikes a balance between 
computational simplicity and the ability to capture non-normal characteristics, making it suitable 
for a wide range of portfolios. 

3.4 Conditional Value at Risk (CVaR) Using Cornish-Fisher Expansion 

The Cornish-Fisher expansion can also be extended to estimate Conditional Value at Risk 
(CVaR), which measures the average loss given that the VaR threshold is exceeded. This metric 
is particularly valuable in understanding the severity of tail risks and provides a more 
comprehensive perspective on potential losses during extreme market conditions. 

Using the adjusted quantiles from the Cornish-Fisher expansion, CVaR is approximated as: 

 𝐶𝑉𝑎𝑅
𝐶𝐹

 =− (µ
𝑝
 +  σ

𝑝
𝑊)

where  represents the adjustment factor for the tail, incorporating the skewness and kurtosis 𝑊
parameters. By integrating the tail distribution beyond the VaR threshold, CVaR provides 
insights into the magnitude of extreme losses, complementing the threshold-based perspective 
of VaR. The following specifies the adjustment factor:  

 𝑊 =  𝑍
𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑

1 +  
𝑧

α
 γ

6  +  (1 −  2𝑧
α
2) γ2

36 + (− 1 +  𝑧
α
2( ) 𝑘

24

The Cornish-Fisher expansion's ability to incorporate skewness and kurtosis makes it a powerful 
tool for portfolios with return distributions that deviate significantly from normality. However, it 
relies on accurate estimation of higher moments, which can be sensitive to outliers and limited 
sample sizes. Moreover, the method assumes that these higher moments remain stable over 
the estimation window, an assumption that may not hold during periods of significant market 
volatility. 

Despite these limitations, the Cornish-Fisher expansion is a practical and efficient approach for 
improving the accuracy of risk estimates in linear portfolios, particularly in scenarios where 
skewness and kurtosis are prominent. 
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3.4 Monte Carlo Simulation 
Monte Carlo simulation involves generating a large number of hypothetical portfolio return 
scenarios based on the statistical properties of the assets within the portfolio. This process 
incorporates the covariance structure of returns and allows for the modelling of diversification 
effects. The steps are as follows: 

1. Simulate Asset Returns: 

Generate random samples of asset returns using the multivariate normal distribution: 

 𝑅
𝑠𝑖𝑚

 ~ 𝑁(µ,  Σ
𝑎𝑑𝑗

)

where: 

●  is the vector of asset mean returns (which can be assumed to be zero for µ
simplicity). 

●  is the adjusted covariance matrix, ensuring positive semi-definiteness. Σ
𝑎𝑑𝑗

 

2. Calculate Simulated Portfolio Returns: 

For each simulated scenario, the portfolio return is computed as: 

 𝑟
𝑝, 𝑠𝑖𝑚

 =  𝑤𝑇𝑅
𝑠𝑖𝑚

where  represents the vector of signed portfolio weights. 𝑤

3. Estimate VaR: 

The VaR is derived by identifying the quantile of the simulated portfolio return distribution at the 
chosen confidence level: 

 𝑉𝑎𝑅
𝑀𝐶

 =  − 𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒 𝑟
𝑝, 𝑠𝑖𝑚, 

,  α( )
 

Monte Carlo simulation is highly adaptable, enabling the modelling of portfolios with non-normal 
return distributions and incorporating dynamic correlation structures. Its ability to generate return 
distributions directly from the covariance matrix ensures that the method is compatible with 
linear portfolios comprising spot and perpetual contracts. Furthermore, the approach naturally 
accommodates non-linearities and tail risks, providing precise estimates of both VaR and CVaR. 

15 



 

The primary drawback of Monte Carlo simulation is its computational intensity. Generating and 
evaluating a large number of return scenarios requires significant processing power, particularly 
for portfolios with numerous assets. Additionally, the method’s accuracy depends on the quality 
of input parameters, such as the covariance matrix, and may suffer during periods of structural 
market shifts where historical data is less predictive. 

Another limitation is that, despite its flexibility, Monte Carlo simulation typically assumes the 
covariance matrix remains constant throughout the estimation period. This assumption may 
reduce the accuracy of risk estimates during periods of rapidly changing market conditions. 

 

Figure 6: illustrates the distribution of simulated portfolio returns and the VaR estimate. 
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4. Backtesting All Models 
Backtesting is an essential step in evaluating the reliability of risk estimation models. By 
comparing predicted losses with actual portfolio performance, backtesting assesses whether 
Value at Risk (VaR) and Conditional Value at Risk (CVaR) estimates accurately capture the 
portfolio's risk profile under historical market conditions. This validation process is crucial for 
ensuring the practical applicability of risk metrics in decision-making and regulatory compliance. 

The backtesting framework used in this study evaluates the performance of four VaR 
models—Normal Distribution, Skewed Student’s t-Distribution, Cornish-Fisher Expansion, and 
Monte Carlo Simulation—by analysing their ability to predict exceptions (instances where actual 
losses exceed the estimated VaR) over a one-year period. Additionally, the Conditional VaR 
estimates are assessed for their effectiveness in capturing average losses beyond the VaR 
threshold. The Kupiec Proportion of Failures (PoF) test is employed to statistically evaluate the 
alignment between observed and expected exceptions. 

4.1 Objective of Backtesting 
The primary objective of backtesting in this study is to validate the predictive performance of the 
VaR and CVaR models for a portfolio comprising 159 digital assets, with both long and short 
positions. Backtesting serves to answer two critical questions: (1) Do the models accurately 
estimate potential losses at the selected confidence levels (e.g., 95% and 99%)? (2) Are the 
observed frequencies of exceptions consistent with the expected frequencies? 

To achieve these objectives, the study employs a rolling-window approach to simulate real-time 
risk estimation. The portfolio is assumed to be rebalanced daily, maintaining the weights derived 
from the net positions of assets. For each day in the backtesting period, the following steps are 
conducted: 

1. Model Estimation: VaR and CVaR are calculated for each day using the four risk 
estimation methods and a 180-day rolling window of historical returns. 

2. Portfolio Return Calculation: Actual portfolio returns are computed based on realised 
returns and portfolio weights for the same day. 

3. Exception Identification: An exception is recorded if the actual portfolio loss exceeds 
the VaR estimate for the day. 

4. Performance Evaluation: The frequency of exceptions is compared to the expected 
frequency at the given confidence level. For example, at a 95% confidence level, 
exceptions are expected on 5% of the days. 

This approach ensures that the backtesting process reflects real-world risk management 
practices, where risk estimates are derived from historical data available at the time of prediction. 
The inclusion of daily rebalancing further enhances the realism of the analysis by accounting for 
the dynamic nature of portfolio composition. 
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4.2 Portfolio Composition and Data 
The backtesting analysis is conducted on a portfolio comprising 159 digital assets, with both long 
and short positions strategically allocated to capture relative value opportunities. The portfolio 
reflects a diversified investment strategy, balancing exposure to large-cap assets with smaller 
allocations to mid- and small-cap assets. Larger positions are concentrated in high market 
capitalisation coins to ensure liquidity and stability, while smaller allocations in lower-cap assets 
introduce diversification and potential for higher returns. 

Historical price data for each asset were collected to calculate daily log returns. The dataset 
spans a sufficient period to facilitate rolling window analysis, enabling the estimation of risk 
measures over time. The long-short nature of the portfolio introduces additional complexity in 
modelling, as traditional risk measures may not adequately capture the dynamics introduced by 
short positions. 

4.2.1 Rolling Window Estimation 

To simulate a realistic investment environment and assess the models' predictive capabilities, a 
rolling window approach was employed. The backtesting was conducted over a one-year period, 
encompassing 365 days. For each day within this period, the VaR models were estimated using 
a historical window of minimum 180 days of asset return data. A number of different windows 
were tried ranging from 180 days to 365 days. 

This rolling window methodology ensures that the VaR estimates are based solely on information 
available up to the prediction date, thereby mimicking the real-time forecasting process used in 
practical risk management. 

4.2.2 Daily Portfolio Rebalancing 

To maintain consistency with real-world portfolio management practices, the portfolio is assumed 
to be rebalanced daily. Rebalancing ensures that portfolio weights remain aligned with the target 
strategy, accounting for changes in asset prices and ensuring that net positions reflect the 
desired economic exposure. The weights for each asset are recalculated as: 

 ω
𝑖
 =  

𝑛𝑒𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛
𝑖

𝑗 = 1

𝑁

∑ 𝑁𝑒𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛
𝑗| |

Where; 

●  is the weight of asset i in the portfolio ω
𝑖

●  is the net position of asset i, positive for long positions and negative for short 𝑁𝑒𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛
𝑖

positions 
● N is the total number of assets in the Portfolio 
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This rebalancing approach allows for dynamic adjustment to market conditions and ensures that 
the risk estimates accurately reflect the portfolio's current composition. 

Volatility estimation is a critical component of the risk modelling framework. For each day in the 
backtesting period, the portfolio's predicted standard deviation is computed as: 

 σ
ρ
 =  𝑤𝑇 ∑ 𝑤

where  represents the vector of portfolio weights and Σ is the covariance matrix of asset 𝑤
returns.  

4.3 Exception Identification 

An exception is recorded on day t if the actual portfolio loss exceeds the VaR estimate for that 
day. Mathematically, an exception occurs if: 

 𝐴𝑐𝑡𝑢𝑎𝑙 𝐿𝑜𝑠𝑠
𝑡
 >  𝑉𝑎𝑅

𝑡

where the actual loss is defined as the negative realised portfolio return: 

 𝐴𝑐𝑡𝑢𝑎𝑙 𝐿𝑜𝑠𝑠
𝑡
 =  −  𝑟

𝑝, 𝑡

For models estimating Conditional Value at Risk (CVaR), exceptions are similarly identified, with 
the CVaR threshold serving as the benchmark. This process enables a consistent evaluation of 
the models' ability to predict extreme losses accurately. 

4.4 Statistical Tools for Backtesting 

The Kupiec Proportion of Failures (PoF) test is employed to evaluate the accuracy of the VaR 
estimates. The test assesses whether the observed frequency of exceptions aligns with the 
expected frequency at the specified confidence level (α). The test statistic is given by: 

 𝐿𝑅
𝑃𝑜𝐹

 =  − 2𝑙𝑛 1−𝑝
^( )

𝑁−𝑥
𝑝

 ̂𝑥

1−α( )𝑁−𝑥α𝑥( )
where: 

● N is the total number of observations (days). 
● x is the number of exceptions observed. 

●  = x / N is the observed exception rate. 𝑝
^

● α is the expected exception rate (e.g., 5% for 95% confidence level). 
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The test statistic follows a chi-squared distribution with one degree of freedom. If  exceeds 𝐿𝑅
𝑃𝑜𝐹

the critical value from the chi-squared distribution, the null hypothesis that the model accurately 
predicts exceptions is rejected. 

5. Backtesting Results 
This section summarises the backtesting results of the VaR and CVaR models, evaluating their 
accuracy in predicting potential losses at 95% and 99% confidence levels. The performance of 
each model is assessed based on the frequency of exceptions and the results of the Kupiec 
Proportion of Failures (PoF) test. These metrics provide insight into each method's reliability and 
suitability for risk management in linear portfolios. 

5.1 Results Overview at the 95% Confidence Level 

This section summarises the backtesting of Value-at-Risk (VaR) estimates using multiple 
methods at both the 5% and 1% confidence levels. The performance of each model is evaluated 
based on the number of VaR exceptions and the Kupiec test statistics. The goal is to determine 
which method provides the most accurate risk estimates for the portfolio. The backtesting was 
conducted over 343 days, with an expected number of 17.15 VaR exceptions at the 5% 
confidence level (α = 0.05) . At the 1% confidence level (α = 0.01), the expected number of 
exceptions is 3.43 over 343 days. The below tables show the results from both confidence levels 
and for all the VaR estimates considered.  

At the 5% Confidence Level: 

Table 1: Backtesting Results (α = 0.05)  

Model Exceptions Expected 
Exceptions P-value Interpretation 

Skewed T Distribution VaR 20 17.15 0.491 
Slightly conservative. The difference is not statistically 
significant, suggesting acceptable model performance. 

Skewed Cornish-Fisher VaR 17 17.15 0.97 
Perfect alignment with expectations. Highest p-value indicates 

exceptional accuracy. 

Skewed Cornish-Fisher EL 
(CVaR) 9 17.15 0.027 

Significantly fewer exceptions than expected. The low p-value 
indicates the model is overly conservative and does not 

accurately predict losses. 
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Normal Distribution VaR 15 17.15 0.587 
Slightly fewer exceptions. Acceptable model performance, 

though it may slightly underestimate risk. 

Monte Carlo Simulation VaR 15 17.15 0.587 
Same as Normal VaR: acceptable performance, with slight 

underestimation of risk. 

 

The Skewed Cornish-Fisher VaR method demonstrated the best alignment with expectations, 
achieving the highest p-value and closely matching the expected number of exceptions. 
Conversely, the Skewed Cornish-Fisher CVaR method was overly conservative, significantly 
underpredicting exceptions, which may result in excessive capital allocation for risk 
management. 

5.2 Results Overview at the 99% Confidence Level 

At a 99% confidence level (α=0.01), the expected number of exceptions over 343 days is 
3.433.433.43. Table 2 summarises the results: 

Table 2: Backtesting Results at 99% Confidence Level (α=0.01) 

Model Exceptions 
Expected 

Exceptions 
P-value Interpretation 

Skewed T Distribution VaR 8 3.43 0.034 

More exceptions than expected. The p-value indicates 
statistical significance, and the model underestimates 

risk. 

Skewed Cornish-Fisher 
VaR 6 3.43 0.207 

More exceptions than expected, but the p-value 
suggests acceptable performance with slight 

underestimation of risk. 

Skewed Cornish-Fisher EL 
(CVaR) 1 3.43 0.12 

Fewer exceptions than expected. The model passes the 
test but is overly conservative, likely overestimating risk. 

Normal Distribution VaR 8 3.43 0.034 
More exceptions than expected. Statistically significant 

underestimation of risk. 

Monte Carlo Simulation 
VaR 8 3.43 0.034 

Same as Normal VaR: statistically significant 
underestimation of risk. 
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At the 99% level, the Skewed Cornish-Fisher VaR method again demonstrated the best 
performance, balancing risk estimation accuracy and conservatism. The Skewed Student's 
t-Distribution, Normal, and Monte Carlo methods failed to accurately predict tail risks, resulting in 
statistically significant underestimation of potential losses. The Skewed Cornish-Fisher CVaR 
was excessively conservative, failing to meet the expected exception frequency. 

5.3 Interpretation of Results 

The backtesting results highlight the strengths and weaknesses of the tested methods: 

1. Best Overall Performance: 
a. The Skewed Cornish-Fisher VaR method consistently aligned with expected 

exception frequencies, particularly at the 95% confidence level, and performed 
well at 99%. 

b. Its ability to incorporate skewness and kurtosis makes it the most reliable method 
for accurately capturing tail risks in linear portfolios. 

2. Conservativeness of CVaR: 
a. The Skewed Cornish-Fisher CVaR method’s overly conservative nature suggests 

it may not be optimal for regular risk estimation. However, its conservative 
approach may be advantageous for stress testing or when a buffer against 
extreme tail events is desirable. 

3. Underperformance of Other Methods: 
a. The Normal Distribution VaR and Monte Carlo Simulation methods failed to 

adequately capture extreme tail risks, as evidenced by their poor performance at 
the 99% confidence level. 

b. The Skewed Student's t-Distribution VaR, while capturing fat tails, still exhibited 
underestimation of risk in the most extreme scenarios. 

5.4 Implications for Risk Management 

The findings demonstrate that VaR methods capable of capturing higher moments, such as the 
Skewed Cornish-Fisher approach, are more effective for portfolios exposed to asymmetric and 
non-normal return distributions. The conservativeness of CVaR methods highlights their utility in 
stress testing, while their limitations in day-to-day risk management must be carefully weighed. 

6. Further Analysis: Sensitivity to Market Conditions 
The backtesting results establish the Cornish-Fisher VaR method as the most reliable risk 
estimation approach for linear portfolios. This section explores its performance in greater detail, 
focusing on sensitivity to market conditions and the relative advantages of Cornish-Fisher CVaR 
in capturing tail risk under stress scenarios. 

6.1 Sensitivity to Market Conditions 
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To evaluate the responsiveness of the Cornish-Fisher methods to changing market dynamics, the 
portfolio VaR estimates were analysed during periods of heightened volatility. A key observation 
was that the Cornish-Fisher VaR demonstrated a lagged response to sudden shifts in market 
volatility, particularly during March to May, a period of pronounced market stress. This lag arises 
from the 180-day rolling window used to estimate the covariance matrix and higher moments. 
Equal weighting of historical observations in this window diminishes the influence of more recent 
volatility spikes. 

The graph below illustrates the relationship between actual portfolio returns and Cornish-Fisher 
VaR estimates. In periods where actual losses exceeded VaR estimates, subsequent increases 
in the VaR threshold were observed, reflecting the model’s adaptive nature but also its sensitivity 
limitations. 

Figure 7: Actual Portfolio Returns vs. Cornish-Fisher VaR Estimates Over Time (alpha = 0.01%) 

 
 

To improve responsiveness, an exponentially weighted moving average (EWMA) approach for 
the covariance matrix can be adopted. By assigning greater weight to recent data, EWMA 
enhances the model’s ability to react to rapid changes in market conditions, providing a more 
accurate risk estimate during periods of heightened volatility. 

The idea of using exponentially weighted moving averages to estimate covariance matrices is 
rooted in making the model adaptive to recent market changes. The classic reference for this 
type of approach is J.P. Morgan's RiskMetrics framework, which was introduced using 
exponentially weighted moving average models for estimating volatility and covariances. The 
original RiskMetrics Technical Document from 1996 provides an in-depth explanation1.  

1 https://www.msci.com/documents/10199/5915b101-4206-4ba0-aee2-3449d5c7e95a 
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6.2 EWMA for Volatility and Correlation Estimation 

The weighted covariance matrix using EWMA gives more recent returns a higher weight, which 
aligns with the idea that recent data is more indicative of current risk. This approach is widely 
used in financial econometrics, particularly for estimating time-varying volatilities and 
correlations. 

The covariance matrix calculation using EWMA can be linked to GARCH (Generalized 
Autoregressive Conditional Heteroskedasticity) models, as both approaches are aimed at 
capturing time-varying volatility. The EWMA essentially performs a simplified GARCH(1,1) 
without explicitly estimating the parameters. 

The EWMA weights are calculated to give more importance to recent data while decaying the 
importance of older observations. The formula for the EWMA weights for each observation i is: 

 ω
𝑖
 =  λ(𝑛−𝑖)

where: 

● λ is the smoothing parameter (typically close to 1, like 0.94). 
● n is the total number of observations (days) in the rolling window. 
● i represents each observation from the most recent to the oldest. 

These weights are normalised so that their sum is equal to 1: 

 ω
𝑖
 =  

λ(𝑛−𝑖)

𝑗=1

𝑛

∑ λ(𝑛−𝑗)

EWMA Covariance Matrix Calculation 

The covariance matrix is calculated by taking into account the weighted contributions of each 
observation (day). The below denotes the formula for the EWMA covariance matrix: 

 
𝐸𝑊𝑀𝐴

∑  =  
𝑖=1

𝑛

∑ ω
𝑖
 ⋅ 𝑟

𝑖
𝑟

𝑖
𝑇

where: 

● is the EWMA weight for observation i, with  as the smoothing parameter ω
𝑖
 =  λ𝑛−𝑖 λ

(commonly 0.94),  
●  is the vector of centred returns (i.e., returns with the mean subtracted) for observation 𝑟

𝑖

i 
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● is the outer product of the centred return   with itself. 𝑟
𝑖
𝑟

𝑖
𝑇 𝑟

𝑖

The smoothing parameter λ controls the decay rate of the weights, with higher values giving 
more emphasis to recent data. This dynamic weighting improves the model's ability to track 
time-varying volatility and correlations, particularly during periods of market stress. 

6.3 Improved Cornish-Fisher VaR with EWMA 

When applied to the Cornish-Fisher framework, the EWMA covariance matrix enhances the 
model’s responsiveness, reducing the lag in VaR estimates during volatile periods. Figure 9 
compares the standard Cornish-Fisher VaR estimates with those derived using the EWMA 
covariance matrix, demonstrating improved alignment with realised portfolio losses in periods of 
heightened volatility. 

Figure 8: Portfolio Returns vs. EWMA Cornish-Fisher VaR Estimates Over Time (𝛂 = 1%) 

 

By incorporating EWMA, the model adapts dynamically to shifts in the risk environment, resulting 
in more accurate and timely risk estimates. This is particularly valuable for portfolios exposed to 
sudden market shocks, where traditional rolling window methods may understate risks. 

6.4 Backtesting Results Summary EWMA VaR and EL 
The below table shows the updated statistics for the Cornish-Fisher VaR and EL using the 
EWMA calculation method as per the above.  
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Table 3: Backtesting Results (α = 0.01)  

Model Exceptions 
Expected 

Exceptions 
Kupiec Test 

P-value 
Interpretation 

Skewed Cornish-Fisher 
VaR 4 3.43 0.76 

The model is performing quite closely to the expected 
number of exceptions. A high p-value indicates that the 

number of VaR exceptions is consistent with the 
expected number, suggesting that the Cornish-Fisher 

VaR model is well-calibrated. 

Skewed Cornish-Fisher EL 
(CVaR) 0 3.43 0.0086 

No exceptions, which is possibly too conservative for 
this confidence level. 

A low p-value indicates that the observed exceptions 
deviate significantly from the expected number. Since 

Cornish-Fisher CVaR produced 0 exceptions, it 
suggests that the model is overly conservative. 
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7. Conclusions and Recommendations 
This study evaluates and compares four methodologies for estimating Value at Risk (VaR) and 
Conditional Value at Risk (CVaR) in linear portfolios, including the Normal Distribution Method, 
Skewed Student’s t-Distribution, Cornish-Fisher Expansion, and Monte Carlo Simulation. By 
incorporating the covariance matrix with signed portfolio weights, the analysis captures the 
economic exposure of portfolios with both long and short positions, enabling a comprehensive 
assessment of potential losses under varying market conditions. 

7.1 Key Findings: 

Cornish-Fisher VaR: 

The Cornish-Fisher VaR consistently demonstrated superior performance across backtesting 
scenarios, particularly at the 95% confidence level. Its ability to incorporate skewness and 
kurtosis allows it to accurately capture the characteristics of non-normal return distributions, 
making it the most reliable method for routine risk monitoring. 

Conservativeness of Cornish-Fisher CVaR: 

The Cornish-Fisher CVaR method exhibited significant conservatism, underestimating the 
frequency of exceptions across confidence levels. While this conservatism may result in 
over-allocation of capital under normal conditions, it provides a valuable buffer during stress 
scenarios, highlighting its utility in capturing tail risks. 

Limitations of Traditional Methods: 

The Normal Distribution and Monte Carlo Simulation methods failed to adequately capture 
extreme tail risks, as evidenced by their underperformance at the 99% confidence level. The 
Skewed Student’s t-Distribution, while addressing fat tails, also struggled to reliably estimate risk 
during extreme market events. 

Dynamic Adaptation with EWMA: 

The integration of exponentially weighted moving averages (EWMA) into the Cornish-Fisher 
framework enhanced the model's responsiveness to changing market conditions. By assigning 
greater weight to recent observations, EWMA-adjusted risk metrics improved alignment with 
realised portfolio losses during volatile periods. 

7.2 Practical Implications 

For Routine Risk Management: 

The Cornish-Fisher VaR provides a reliable and efficient tool for day-to-day risk monitoring, 
offering accurate estimates of potential losses while maintaining regulatory compliance. Its 
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adaptability to portfolio-level skewness and kurtosis ensures robust risk assessments across 
diverse market conditions. 

For Stress Testing: 

Cornish-Fisher CVaR is particularly well-suited for stress testing and scenario analysis, providing 
insights into the magnitude of losses beyond the VaR threshold. Its conservatism ensures 
preparedness for extreme market events, but its use should be complemented by more 
calibrated methods in routine operations. 

Balancing Efficiency and Conservatism: 

Risk managers should adopt a dual approach, using VaR for capital allocation and regulatory 
reporting, while leveraging CVaR for stress testing and extreme risk scenarios. The integration of 
adaptive methodologies, such as EWMA, further enhances the reliability of these metrics. 

7.3 Future Directions 

The findings underscore the importance of continued refinement in risk estimation 
methodologies. Future research could explore: 

● The integration of non-parametric methods or machine learning models to dynamically 
estimate higher moments, reducing reliance on fixed-window assumptions. 

● The application of time-varying covariance models, such as GARCH, to complement the 
EWMA framework for improved responsiveness. 

● Expanding the scope to include nonlinear instruments, such as options or dated futures, 
to evaluate the broader applicability of these methodologies. 
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8. Limitations 
While this study provides a comprehensive analysis of risk estimation methodologies for linear 
portfolios, several limitations warrant discussion. These constraints highlight areas where 
caution should be exercised in interpreting results and where future research could provide 
further insights. 

8.1 Data and Portfolio Composition 

1. Concentration in Large-Cap Assets: 
The portfolio under analysis places significant weight on high market capitalisation 
assets, reflecting common investment practices to prioritise liquidity and stability. While 
this approach enhances the robustness of the covariance matrix and reduces noise from 
less liquid assets, it may limit the generalisability of findings to portfolios with a heavier 
reliance on mid- and small-cap assets, which exhibit higher idiosyncratic risk and 
volatility. 

2. Historical Data Assumptions: 
The use of historical returns assumes that past volatility, correlations, and higher 
moments are indicative of future market behaviour. This assumption may not hold during 
periods of structural market change, such as regulatory shifts, sudden macroeconomic 
shocks, or changes in market participant behaviour. 

8.2 Methodological Constraints 

1. Fixed Estimation Window: 
The primary analysis relies on a 180-day rolling window for estimating the covariance 
matrix and higher moments. While alternative windows were considered for sensitivity 
analysis, fixed-length windows may fail to capture abrupt changes in market conditions. 
The inclusion of exponentially weighted moving averages (EWMA) addresses this to 
some extent, but additional refinement may be required for scenarios with rapid volatility 
clustering. 

2. Higher-Moment Estimation Stability: 
Methods such as the Cornish-Fisher expansion rely on accurate estimation of skewness 
and kurtosis. These higher moments are sensitive to sample size and outliers, 
particularly in shorter estimation windows. As a result, the stability of these estimates 
may be compromised during periods of extreme market movements, impacting the 
accuracy of risk metrics. 

3. Simplifications in Monte Carlo Simulation: 
The Monte Carlo approach assumes a multivariate normal distribution for asset returns, 
which may oversimplify real-world return dynamics. While computationally efficient, this 
assumption limits the model's ability to fully account for non-linear dependencies or tail 
events. 

8.3 Model Applicability 

29 



 

1. Exclusion of Nonlinear Instruments: 
The analysis focuses exclusively on linear portfolios comprising spot and perpetual 
contracts. Portfolios including nonlinear instruments, such as options or dated futures, 
introduce additional complexities, such as time decay and path dependency, which are 
not addressed in this framework. 

2. Assumptions of Portfolio Rebalancing: 
The assumption of daily portfolio rebalancing ensures alignment with the target strategy 
but may not reflect real-world constraints such as transaction costs, slippage, or 
operational limitations. These factors could affect the practical application of the 
proposed methodologies. 
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